The Combined L1/L2 Trigger Simulator

Dylan Casey, Josh Kalk, Roger Moore,Dugan O’Neil,
September 28, 2000

Contents

1

2

General Introduction

The Combined Simulation Framework(tsim 1112)

2.1 The DataFlow Dispatcher

2.2 RCP Configuration,

2.3 Running tsim 1112 L.

2.4 Built-in Configurations and Examples

2.5 Inter-Package Communication
2.5.1 The DataBroadcast Class
2.5.2 What about IOGEN? MBT Channels??

Configuration via CoorSim
Sending Data to L3 (1112collector)

Adding an L1 Processor

5.1 Being Part of the DataFlow
5.1.1 The inputs Function
5.1.2 The outputs Function
5.1.3 Theready function,

5.2 Example: Toy Version of LICTT

53 Beingpartoftsim 1112

5.4 Placestolook forhelp L.

The L1 Framework (11frm)
Adding an L2 Worker

Global Tools and Filters

14

14

15

1 General Introduction

This document is intended both as a users guide and a developers guide to the
combined L1/L2 trigger simulation. The opening sections should give some-
one familiar with the DO software environment enough information to run the
simulator. More detailed information for developers follows in later sections.

2 The Combined Simulation Framework(tsim 1112)

tsim 1112 is the package which controls the running of the combined level 1
and level 2 simulation. It functions mainly as a repository of configuration
information (eg. rcp’s) and an area from which to run the simulation. The only
code included in the package is either related to communication between various
level 1 and level 2 packages (eg. the DataBroadcast class, spy modules) or is
simply example code. The tsim 1112 package takes advantage of the DataFlow
Dispatcher of the offline framework [1] (which is described in more detail in
the following sections) to pass information between packages. This chapter will
describe how to compile and run the simulation using the tsim 1112 package.

2.1 The DataFlow Dispatcher

The offline framework’s DataFlow Dispatcher allows data to be moved through
our simulation in much the same way that our hardware transports data online.
Each package acts on the principle “I will run when I have a full set of inputs”.
Users of the DataFlow need only configure packages with a list of required inputs
and outputs, the order of execution of the packages is determined automatically
by the framework at runtime.

As an example of the intelligent package-ordering possible in this model
consider the level 1 / level 2 calorimeter trigger system. This system contains
a level 1 cal processor package, three level 2 cal preprocessor packages and a
level 2 global processor package. In a DataFlow model each of these packages
inherits from the DFPackage class and includes “inputs” and “outputs” methods
in which lists of required inputs and outputs are defined. By defining the level
1 output as a required input to the level 2 preprocessors the framework will
guarantee that the level 1 cal processor will run first. Similarly, by defining
the outputs of the level 2 preprocessors as required inputs of global it will be
guaranteed to run last. At initialization time the framework will check all input
and output lists for logical inconsistencies (eg. required inputs which cannot be
produced as outputs by any package) and will issue an error message if any are
found.

The DataFlow Dispatcher allows the 11/12 trigger simulation to be viewed as
a black box. An event enters the box and a Raw Data Chunk exits the box on
its way to level 3. The communication among 11 and 12 packages is only seen by
packages within the DataFlow. It allows the entire 11/12 simulation, composed
of numerous packages, to be included as a single package (tsim_1112).

2.2 RCP Configuration

All rep files required to run the simulation should be stored in the tsim_1112/rcp
directory. This includes configuration for each level 1 processor, each level 2
worker, global, etc. Main program control is implemented in rcp files such as
head example.rcp. This file sets up the offline framework controller and lists
packages which will be used by the framework. In this rcp the internal 11/12
DataFlow network appears as a single package. An example of such a controller
is shown below:

string PackageName = "Controller"

string Packages = "newevent configure tsim dump"

string interfaces = '"generate decide l2configure process dump"
string Flow = "generate decide l2configure process dump"

RCP newevent = < tsim_1112 newevent >

RCP configure = <tsim_coor L2CoorMgr>

RCP tsim = < tsim_1112 tsim_example >

RCP dump = < tsim_1112 dumpevent >

In this example the “tsim” package refers to an RCP which configures the
DataFlow network. An example rcp to configure such a DataFlow is shown
below:

string PackageName = "Dataflow"

string Packages = (llexample 12pp global_example collector)
RCP llexample = < tsim_1112 11_example >

RCP 12pp = < tsim_1112 12pp_example >

RCP global_example = < tsim_1112 12_global_example >

RCP collector = < tsim_1112 1112_collector >

This example contains a single 11 processor, a single 12 preprocessor, a global
worker and the collector which writes simulation information to the Raw Data
Chunk.

2.3 Running tsim 1112

These instructions assume that you have never before used tsim 1112 or similar
packages. They also assume that all necessary packages are included in the latest
DO software release and do not need to be recompiled by the user. Experienced
users may wish to skip to step 5.

1. Recite the usual incantations:

e setup DORunII versionnumber

e setup dOcvs

2. start a new release area:

e newrel -t versionnumber mydir
3. enter the release area and checkout tsim 1112:

e cd mydir
o addpkg tsim_ 1112

4. set this directory as your working area:
e dOsetwa

5. make the tsim 1112 executable:
e gmake tsim_1112.bin

6. run the simulation:

e cd tsim_1112/bin
e ./Runme.sh

Runme.sh optionally takes 2 commandline arguements, the first specifies the
controller rcp which will be used to configre the simulation, the second specifies
any framework commandline arguements (eg. -config). By default Runme.sh
will choose to run with the head.rcp configuration file. An example of a different
configuration is:

Runme.sh head example.rcp -config

which chooses the head example controller and passes the framework a -config
arguement.

In order to modify the configuration of individual packages used in the sim-
ulation the rcp files in the tsim 1112 rcp directory should be modified. For
example, by default the simulator will read from a datafile named input.data,
this can be changed by editing tsim 1112 /rcp/ReadEvent.rcp to choose a differ-
ent filename.

2.4 Built-in Configurations and Examples

The tsim_ 1112 package comes with some example code and a few pre-set con-
figuration files. Several examples of Dataflow “spies”’ (routines which intercept
information in the dataflow for package development and analyze output) are
provided for developers and several controller rcp files are provided for users.
The controller rcps include:

e head.rcp - runs all available L1 and L2 components

e head analyze.rcp - runs all available analyze packages to fill a common
ROOT file

These files can, of course, be customized by the user, they are merely provided
as examples of tested, functional configurations.

2.5 Inter-Package Communication
2.5.1 The DataBroadcast Class

The DataBroadcast class is part of the tsim 1112 package. All data passed from
level 1 to level 2 packages or passed between level 2 packages is sent to the offline
framework inside a DataBroadcast. Consider the following example code used
to pass an MBT channel from a level 1 processor to the framework:

//
/ / put mbt channel into Databroadcast class
//
DataBroadcast *output=new DataBroadcast (4096) ;
output->store(mbt_track);
//
// put broadcast in offline framework datastore
//
produceltem(ds,output,liexample_id);

All level 1 and level 2 packages are required to communicate with level 2 via
MBT channels stored in DataBroadcast classes in this manner. Passing data to
the 1112collector is described in a later chapter.

2.5.2 What about IOGEN? MBT Channels??

Though neither IOGEN nor MBT channel classes are part of tsim 1112, for those
developing packages to run in tsim 1112 knowledge of these topics is essential.

IOGEN is a python package (12iogen) which, given a configuration file, au-
tomatically generates C++ code to handle the IO of L2 packages. The classes
it produces know how to pack data into a standard format which can be read
back by other packages using the same classes. All L1/L2 packages in the sim-
ulation use IOGEN generated classes (included as part of the 12io package) to
define the tracks, electrons, jets, etc. that they wish to pass to other packages.
A complete IOGEN manual may be obtained from the L2 software web site
(http://dOlxmsul.fnal.gov/L2).

MBT channels define the standard L2 format for data movement. IOGEN
objects are added to an MBT channel using its addobject method.When an
IOGEN object is added to an MBT channel the MBT channel knows how to
add (or update) the appropriate L2 header and L2 trailer information.

As an example of how this whole thing works: 25 IOGEN objects called
“jets” are created in a given event by the L2 caljet processor, they are all added
to a single MBT channel, this MBT channel is then wrapped in a DataBroadcast
class and put into the Dataflow to be picked upby the L2 global prcessor.

3 Configuration via CoorSim

This is coor documentation. Sorry this does not exist yet.

4 Sending Data to L3 (1112collector)

The 1112collector has the task of collecting all level 3 output from level 1 and level
2 packages and writing it to the RawDataChunk. By definition the collector is
the last package to run in the Dataflow (it is forced to always be last using the
finishReady method). It expects to receive data wrapped in L3CrateBroadcast
classes which are very similar (and inherit from) the DataBroadcast class defined
in the previous section but require a crate and module number be specified. The
1112collector will attempt to collect all objects in the Dataflow which have been
“aliased” as 13output in the produceltem call of a Dataflow package (ie. produ-
celtem(datastore,item,name,l3output)).

5 Adding an L1 Processor

The simulation packages for the L1 trigger system (e.g., tsim_l1cal, tsim_11ft)
must present outputs to the L2 preprocessors in a way that mimics the online
system. Inputs and outputs to the L2 system are all done throught the Data
Flow portion of the offline framework (ref). Briefly, once all outputs are ready
for transport, one packs that output into the data classes that L2 uses (which
are created by the I/Ogen framework). These classes are wrapped up into Fil-
lableMBT Channels and MBTChannels, which are the classes that perform the
same function as the cables and MBT cards do in the online system - they carry
and hold the data from one system to the other. Theses classes themselves are
presented to the rest of the simulation packages by putting them into the “data
store”. Once in the data store, any other package in the data flow framework
can access the information. Please see the references for more information about
the data store and the data flow framework.

In the first section, we outline the necessary functions in a DataFlow package,
using the example of building a simulator for the L1ICTT. The end of the first
section contains a reasonably detailed example of actual header and source code.
The second section delineates how to put your new package into the tsim 1112
package.

5.1 Being Part of the DataFlow

In order to be part of the DataFlow, a program must do 3 things:

e The class itself must inherit from DFPackage

e The class must have the public member functions:
fwk::Result ready(fwk::DataStore& ds),
void outputs(fwk::DFPackage::StrList& 1);
void inputs(fwk::DFPackage::StrList& 1)

e The class must have private data members holding the id’s for the data
flow, e.g., fuk::Action::Id 1icfti_id. These will be filled in from RCP calls
in the code.

5.1.1 The inputs Function

The inputs function provides access to the event from the DataStore. Typically,
it will look like:

void L1CTT::inputs(fwk::DFPackage: :StrList& 1)
{

1.push_back("event");
}

This allows the package to access the object on the DataStore called “event”.
We will discuss passing the event to the processEvent function in the section
describing ready.

5.1.2 The outputs Function

The outputs functions puts the output classes onto the DataStore for access by
other DataFlow packages. Typically, it looks like:

void L1CTT::outputs(fwk: :DFPackage::StrList& 1) {
1.push_back(packageRCP() .getString("l1lctt1")); //use the name from the RCPfile
1.push_back(packageRCP() .getString("11ictt2"));
1.push_back(packageRCP() .getString("11ctt3"));
1.push_back(packageRCP() .getString("1lictt4"));
1.push_back(packageRCP() .getString("licttfrm"));
}

Note that the id used by the DataFlow framework is contained in your package’s
RCP file. Your RCP file will need to have lines like:

string llcttl = “lilcftl”

Any package that wants to access these outputs just needs to pull 11cft1 off
the DataStore.

5.1.3 The ready function

The ready function takes the DataStore as it’s argument, providing access to
and from it. This function is the heart of the DataFlow framework, much like
processEvent is the heart of Controller type of framework. In it, you call the
processEvent function in your package and fill all the MBT Channel outputs to
the L2.

5.2 Example: Toy Version of L1CTT

Here is an example of the header and source files for a toy LICTT simulator. You
can get most of this from the file “casey/trigsim/t91/tsim 1112 /src/L1CTT.cpp
on dOmino. Note that processEvent needs to be filled in!

First, the header file:

// File: tsim_1112/L1CTT.cpp
// Purpose: Class to simulate output from a Level 1 example processor and
// pass into the Level 2 dataflow framework.
//
#include <string>
#include <iostream>
#include "framework/Registry.hpp"
#include "framework/Result.hpp"
#include "framework/Action.hpp"
#include "framework/DFPackage.hpp"
#include "edm/Event.hpp"
#include "dOom/dO_Ref.hpp"
#include "12base/L2.hpp"
#include "12base/io.hpp"
#include "12io/FillableMBTChannel.hpp"
#include "tsim_1112/DataBroadcast.hpp"
#include DATAHEADER(L1CTTTrack)
#include IOHEADER(L1CTTTrack)
class L1CTT : public fwk::DFPackage {
public:
L1CTT(fwk: :Context*) ;
~L1CTT() ;
fwk: :Result ready(fwk::DataStore&) ;
void inputs(fwk::DFPackage: :StrList&);
void outputs(fwk::DFPackage::StrList&);
void processEvent(edm::Event &event); // where the work gets done
private:
fwk::Action::Id 1lilcftl_id; // ids for the dataflow framework
fwk::Action::Id 1licft2_id;
fwk::Action::Id 11cft3_id;
fwk::Action::Id 1licft4_id;
cttTrack CTTTrackArray[100]; // Array holding the results from processEvent.
I

Now for the source code:

#include ‘““lictt/llctt/hpp”’

using namespace edm;

using namespace std;

using namespace fwk;

using namespace 12io;

using namespace tsim_1112;

//

// register this package with the framework
FWK_REGISTRY_IMPL(L1CTT,"$Name: $")

// Constructor

// A1l 11 simulation need to inherit from fwk:DFPackage ("DataFlowPackage")
// in the comnstructor.
L1CTT: :L1CTT(fwk: :Context* con): DFPackage(con){

}

//

// get id (label) of the outputs to the DataFlow for this processor. There

// are 4 for the track info and 1 for the andor terms going to the 1l1lfwk
licftl_id=Action::instance()->mapNameToID(packageRCP() .getString("1l1lctt1"));
licft2_id=Action::instance()->mapNameToID(packageRCP() .getString("11lctt2"));
licft3_id=Action::instance()->mapNameToID(packageRCP() .getString("11ctt3"));
licft4_id=Action::instance()->mapNameToID(packageRCP() .getString("1l1lctt4"));
licftfrm_id=Action::instance()->mapNameToID (packageRCP() .getString("licttfrm"));

//Destructor

L1CTT::"L1CTT() { // do the cleanup here }
// processEvent function

void processEvent (edm: :Event &event){

}

// Do all the stuff you’ve always done in the processEvent function

// In particular, you will fill some object (e.g., CTTTrackArray) whose
// contents will be sent to L2.

cout << ““In processEvent’ << endl;

// ready function

// This is the function called by the Data Flow framework. It provides access
// to the event. The processEvent function is called from here.

Result L1CTT::ready(DataStore& ds) {

cout << instanceName() << "/L1CTT::ready " << endl;
// Get the event from the data store
Event* e = fwk::getEvent(ds);
if(e==0) { // check that there is an event!
error_log(ELfatal,"ready") << "No Event found! Bad!" << endmsg;
return Result::failure;
}
// Process the event
processEvent (xe) ;
//
// Event processing is done. The information you want to send to L2 should
// be contained in data members of the LI1CTT class. Now, you will add this
// information to the output classes to L2.

cout << " LICTT: adding elements " << endl;

/1

// Create the FillableMBTChannels that will be put on the DataStore

// The template arguments in each case are the IOgen data class for the
// object and the maximum number of objects allowed. The initialization
// arguments (e.g., CTT_CFT1,0,1) are the datatype (from

// 12base/datatypes.hpp), the major version, and minor version number of the
// I0gen output class.

//

FillableMBTChannel<L1CTTTrackData,15> mbt_trackl1 (CTT_CFT1,0,1);
FillableMBTChannel<L1CTTTrackData,15> mbt_track2(CTT_CFT2,0,1);
FillableMBTChannel<L1CTTTrackData,15> mbt_track3(CTT_CFT3,0,1);
FillableMBTChannel<L1CTTTrackData,15> mbt_track4 (CTT_CFT4,0,1);

// Create an instance of the IOgen class that will be filled and added to

// the FillableMBTChannel (and then onto the DataStore).

L1CTTTrackData cttTrack;

// Now, loop over all the tracks, sending them to the appropriate outputs.

for(int itrack=0; itrack<Ntrack; itrack++){
// Set the data members of cttTrack. You can see what the datamembers are
// by looking at the 12io/12io.iogen file. I’ve shown all that are there
// as of t92, which I got from the TDR. It is important to remember that
// since the IOgen classes do all the packing, you must get the data types
// correct. For instance, all of the unpacked data members to the
// L1CTTTrackData class are uint32 objects (defined in
// 12base/types.hpp), therefore, all of the accessors in the local array
// CTTTrackArray must return uint32 quantities.
cttTrack.setIsolation(CTTTrackArray.iso());
cttTrack.setPSThresh (CTTTrackArray.psThresh());
cttTrack.setErrorCode (CTTTrackArray.errCode());
cttTrack.setPT(CTTTrackArray.pt());
cttTrack.setPTbin(CTTTrackArray.ptbin());
cttTrack.setSign(CTTTrackArray.sign());
cttTrack.setSector (CTTTrackArray.sector());
cttTrack.setFibreNumber (CTTTrackArray.fiber());
//
// Put track into the appropriate MBT Channel, which are assigned based upon
// sectors. (I think this is how it works, but I’m really making it up.)
if (CTTTrackArray.sector() == 1) mbt_trackl.addObject (cttTrack);
if (CTTTrackArray.sector() == 2) mbt_track2.add0bject (cttTrack);
if (CTTTrackArray.sector() == 3) mbt_track3.addO0bject (cttTrack);
if (CTTTrackArray.sector() == 4) mbt_track4.addObject (cttTrack);

}

//

// Now, all the tracks are filled, but the output to the L1 framework is left

// Create the output to the L1FRM

L1FRMAndOrData *terms=new L1FRMAndOrData;

terms->setSourceID(1) ;

terms->setNActive(64) ;

bool andorl=true;

int andor_id1=25;

for (int i=0;i<64;i++) {

10

int j = i+1;
And0rPair cal_andorl(bits[il,j); // AndOrPair is defined in tsim_l1fwk
terms->setAnd0r(i,cal_andorl.get_cable());
}
//
// Now, all the MBTChannels are filled. All that is left is to put them in
// the DataStore to be sent to L2.
// For the L2 input/output, we use the DataBroadcast class to hold the data.
// We need one for each output to L2, i.e., one for each MBTChannel
//
DataBroadcast *outputl=new DataBroadcast (4096) ;
DataBroadcast *output2=new DataBroadcast (4096) ;
DataBroadcast *output3=new DataBroadcast (4096) ;
DataBroadcast *output4=new DataBroadcast(4096) ;
// Put the FillableMBTChannels into the DataBroadcast objects
outputl->store(mbt_trackl);
output2->store (mbt_track?) ;
output3->store(mbt_track3);
output4->store(mbt_track4) ;
//
// Put DataBroadcast objects in the datastore
produceltem(ds,outputl,licfti_id);
produceltem(ds,output2,licft2_id);
produceltem(ds,output3,licft3_id);
produceltem(ds,output4,licft4_id);
produceltem(ds,terms,licftfrm_id);
cout << "exiting llctt " << endl;
return Result::success;
}
//
// inputs method tells framework which inputs are required for
// ready method to run.
void L1CTT::inputs(fwk::DFPackage: :StrList& 1) {
1.push_back("event"); // We want to be able to access the event!
}
//
// outputs method tells framework which outputs are produced by ready method
void L1CTT::outputs(fwk: :DFPackage::StrList& 1) {
1.push_back(packageRCP() .getString("l1lctt1")); //use the name from the RCPfile
1.push_back(packageRCP() .getString("1lictt2"));
1.push_back(packageRCP() .getString("11ctt3"));
1.push_back(packageRCP() .getString("1lictt4"));
1.push_back(packageRCP() .getString("licttfrm"));

11

5.3 Being part of tsim 1112

Here is a “play-by-play” action list for taking a header file and source file
(I1ctt.hpp and llctt.cpp above), and creating a package and making the ap-
propriate changes to tsim_ 1112 in order to run it.

e Setup your release area (called myRel from now on) and change directories
to it.

e Create a new package in your release area (called 11cttsim from now on),
and create the link to the package header directory in the myRel/include
directory.

e Put your header and source file in the header and source directories of
licttsim.Don’t forget to put DOC++ comments in the header files. Also,
be generous with your comments in general - other folks have to read your
code!

e Add 12base and 12io to 11cttsim/LIBDEPS
e Add the source file to 11cttsim/src/COMPONENTS

e Add a dummy test file for your source code to the 11cttsim/src directory
(e.g., %> echo ““int main(){return 0;}” >> llctt_t.cpp). Thisisso
that your code doesn’t fail the component test in the build system.

e Add a framework initialization file -11cttsim/src/fwkL1CTTSIM.cpp:
#include "framework/Registry.hpp"
FWK_REGISTRY_DECL(1licttsim)
and add that file to the O0BJECT_COMPONENTS file in llcttsim/src (e.g.,
%> echo fwkL1CTT >> OBJECT_COMPONENTS)

e Create an RCP file for your package (11cttsim.rcp)and put itin 11cttsim/rcp.
It should look like:
string PackageName = "llcttsim"
// here is the stuff for the MBT outputs
string licttl = "llcftl"
string llctt2 = "llcft2"
string 1l1lctt3 = "1l1lcft3"
string lictt4 = "llcft4"
string licttfrm = "llcftfrm"

Now, your package is ready to be added to tsim 1112.

e Add the tsim 1112 package to your release area, i.e., %> addpkg tsim_1112,
which is just add the current release version to your local area.

o Add the name of the package (11cttsim) to the tsim_1112/bin/LIBRARIES
file.

12

e Add the name of the framework registration file (fwkL1CTTSIM) to the
tsim_1112/bin/0BJECTS file

e Create anew “head” rcp file for running tsim_1112 by modifying tsim_1112/rcp/head.rcp
and tsim_1112/rcp/tsim.rcp. We’'ll call the new files myhead.rcp and
mytsim.rcp. I've highlighted the changes in italics.

First myhead.rcp:

string InterfaceName = "process"

string Interfaces = '"generator 1l2configure process dump"
string Flow = "generator l2configure process dump"
string PackageName = "Controller"

string Packages = '"read calfe cttfe runConfigMgr configure tsim dump"
RCP read = <tsim_1112 ReadEvent>

RCP calfe = <calunpdata CalMCToUnp>

RCP cttfe = <whatever it is>

RCP runConfigMgr = < run_config_mgr run_config_mgr >

RCP configure = <tsim_coor L2CoorMgr>

RCP tsim = <tsim_1112 mytsim>

RCP dump = < tsim_1112 dumpevent >

I don’t know what package produces the front-end information for the
l1ctt. The point is, however, that whatever packages that are not part of
the dataflow (for instance, you need to run a package that creates some un-
packed data chunks which you will read in later — this is what tsim 11cal
does) tha need to run before your new package should be run in the rcp
file above.

Now, mytsim.rcp:

string PackageName = "Dataflow"

//string Packages = (llcal 11frm 12calem l2caljet 12calmet global collector)
string Packages = (llcal li1ctt)

RCP lical = < tsim_l1lcal tsim_l1lcal >

RCP 1llctt = < 1llcttsim llcttsim >

RCP 1ifrm = <tsim_1112 tsim_l1frm>

RCP 12calem = < tsim_1112 12_calem >

RCP 12caljet = < tsim_1112 12_caljet >

RCP 12calmet = < tsim_1112 12_calmet >

RCP global = < tsim_1112 12_global >

RCP collector = < tsim_1112 1112 _collector >

Commenting out the entire data flow (the Packages string) allows you
to just run the the portions of the the simulation that you are interested
in.

Now, you should be able to recompile and try running tsim_1112 by going into
the tsim_1112/bin directory and typing ./Runme.sh

13

5.4 Places to look for help

We are still putting together documentation. If you have questions, please feel
free to ask Dylan Casey (casey@pa.msu.edu), Dugan O’Neil (oneil@fnal.gov),
Roger Moore (moore@pa.msu.edu), or Josh Kalk (kalk@pa.msu.edu). Dylan
and Josh put tsim llcal into the DataFlow model and made it output to the
L2 preprocessors. The tsim _11cal package is also useful to look at as an example
of a working package.

6 The L1 Framework (11frm)

This is a brief description of what the framework does, what it requires as input,
etc.

7 Adding an L2 Worker

Adding an L2 worker to the simulation is somewhat different than adding an
L1 worker. L2 worker code is online code and therefore must conform to online
coding guidlines. A standard offline interface to the online worker code has
been provided as part of the tsim 12 package. Simulation inputs and outputs
are created and managed by this interface. This means that the worker code
itself must only create and fill its IOGEN-generated objects. The filling of MBT
channels, creation of DataBroadcast classes and sending of information to the
Dataflow dispatcher is all handled by the interface.

In order to more easily define the input and output formats expected by the
online worker a tool called EVIGEN has been provided as part of the 12tools
package. This is a python package which parses and input text file and generates
C++ classes which can be used to define the formats. The inputs are presented
to the worker by the offline interface. The output definition is a defintion of
the L3 output format of the worker. From this the offline interface can create
the L3 output and can extract the L2 global output and send these items to
the Dataflow Dispatcher. An example EVIGEN output configuration is given
below:

[I0Block]
package = 1l2caljetworker
worker = Callet
type = output
blockID = CALJET_STD_QUTPUT
majorver = 0
minorver = 1
incdir = Y (package)s
srcdir = src
12output = jet
[Channel0]

14

name = jet

object = CALJet
type = unpacked
limit = 50

sourcelID = GBL_JET
stdfetch = 12workerbase/fetchFromStore

ubsfetch = 12workerbase/fetchFromStore
majorver = 0
minorver = 1

comment = Output jets from L2CALJet

No EVIGEN manual exists. To write this file for your package you will need
help from the authors of this manual.

Once the inputs and outputs for the package have been defined through EVI-
GEN and the worker code has been written two packages need to be made away
of the existence of the new worker: tsim 12 and tsim 1112. To add the worker
to tsim 12 a simple routine to instantiate a worker of this new type must be
written and added to tsim 12/src/. An example of such a file is (L2CalJet.cpp
for the calorimeter jet worker):

#include <iostream>

#include "framework/Registry.hpp"

#include "tsim_12/L2Interface.hpp"
#include "12caljetworker/CalJetWorker.hpp"
#include "12caljetworker/CalJetInput.hpp"
#include "12caljetworker/CalJetOutput.hpp"
using namespace fwk;

using namespace tsim_12;

using namespace l2caljetworker;

typedef class L2Interface<CalJetWorker> L2Callet;
FWK_REGISTRY_IMPL(L2CalJet,"$Name: $")

...this is the whole file. Then add this filename to the tsim 12 COMPONENTS
file. Next include a line like:

FWK_REGISTRY_DECL(L2CalJet)

in fwkRegTsiml2.cpp and include your new worker library in its LIBDEPS file
and tsim 12 is ready. To add the packjage to tsim 1112 it is only necessary
to add your rep file to tsim_1112/rcp and reconfigure the tsim 1112 Dataflow
controller (eg. tsim.rcp) to run your worker.

8 Global Tools and Filters

global documentation. Includes list of available tools. References Dylan’s doc-
ument on how to write a tool/filter.

15

References

[1] This is the Kowalkowski Framework user’s guide

16

